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Abstract. According to the World Health Organization, Autism Spectrum Disorder affects 1 in 160 

children, a disturbance of neurodevelopment characterized by symptoms such as difficulties in interaction 

and social communication, narrow interests, and repetitive behaviors. In this work, we diagnose Autism 

Spectrum Disorder using Machine Learning (ML) tools through the supervised training of Multi-Layer 

Perceptron and KNN classifiers. The validation algorithms were Hold-Out and K-Fold Cross Validation for 

both methods. The precision with the Multi-Layer Perceptron was 100% with Hold-Out and K-Fold Cross 

Validation, and with the KNN classifier, the accuracy was 91% and 87%, respectively. 
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1. Introduction  

Autism spectrum disorder (ASD) is a developmental disorder that affects communication and behavior. 

Although autism can be diagnosed at any age, it is said to be a developmental disorder because symptoms 

generally appear in the first two years of life [1]. In addition, it is called a spectrum disorder because people 

with ASD can have a range of symptoms [2], and it is seen as a spectrum that can range from very mild to 

severe. Nevertheless, many (but not all) individuals with ASD require lifelong support of some kind [3]. 

In Mexico, it is estimated that 1 in 115 children have Autism Spectrum Disorder (ASD) [4]. However, 

some institutions, such as the Mexican Institute of Social Security (IMSS) and the Secretariat of Health and 

Assistance (SSA), do not have the devices for screening and/or detecting ASD [5], regardless of the level of 

medical care. Only 19 of the 32 states of the Mexican Republic have any medical devices to carry out the 

diagnosis of ASD, but the number of them is not enough. Therefore, an intelligent system is proposed in this 

work that allows diagnosing ASD through parameters obtained from questions. 

We consider the diagnosis problem a classification task; therefore, we applied two classifiers to achieve 

the diagnosis. 

2. Related Work  

Vaishali and Sasikala [6] used some classifiers included in the WEKA software. They analyze the same 

dataset that we used in this work. A Swarm intelligence-based single-objective binary firefly feature 

selection wrapper was applied, and they found that the classifiers work better with only ten features from the 

21 original features. The validation algorithm was 10-Fold Cross-Validation. The accuracy results were: 

Naïve Bayes with 95.55%, J48 with 92.12%, Support Vector Machine with 99.66%, K-Nearest Neighbors 

with 87.67, and Multilayer Perceptron with 99.66%. 

A Feedforward Neural Network technique was applied to detect ASD [7]. The authors used the Modified 

Checklist for Autism in Toddlers (MCHAT) dataset with 14,995 records. The result was a total correct 

classification percentage in the range of  99.56-99.76. 

Wang et al. [8] applied functional connectivity (FC)-based algorithm for classifying autism and control 

using support vector machine-recursive feature elimination (SVM-RFE). First, they performed feature 

selection with the FC and used SVM-RFE as a classifier. Then, they applied two validation algorithms: 4-

Fold Cross-Validation and Leave-One-Out. As a result, they report the following results: for 4-Fold Cross-
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Validation, an accuracy of 90.60% (sensitivity 90.62%, specificity 90.58%), and for Leave-One-Out a 

precision in the range of 75.00%–95.23%. 

A mobile application was proposed [9], which provides the user interface capturing questionnaire data, 

then a Convolutional Neural Network performs the screening. The authors report an accuracy of 98.88% 

with the 10-Fold Cross-Validation algorithm. 

Wingfield et al. [10] also proposed a mobile application. The dataset was a mixture of two datasets: 

Diagnostic and Statistical Manual of Mental Disorders 41 and M-CHAT, and modified to include cultural 

considerations. 10-Fold Cross-Validation was applied. They used some classifiers from WEKA: Adaptive 

Boosting, Decision Tree (J48), Multi-Layer Perceptron, Naïve Bayes, Ruled-based model, Random Forest, 

Sequential minimal optimization, and Support Vector Machine. The range of the accuracy was 88%-93%. 

3. Methods and Materials 

In this section, the classification algorithms are presented together with the validation methods. Also, the 

dataset used in this work is described. 

3.1. K-Nearest Neighbors Algorithm 

Contributions to the congress are welcome from throughout the world. Manuscripts may be submitted to  

The k-nearest neighbor algorithm [11] is a technique for classifying objects based on closest training 

examples in the problem space. The k-nearest neighbor algorithm is among the simplest of all machine 

learning algorithms: similar things exist nearby and are close to each other. An object is classified by a 

majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest 

neighbors (k is a positive integer). If k = 1, then the object is simply set to the class of its nearest neighbor. 

Now, the algorithm will be described. 

It will be assumed that the instance domain, X, is endowed with a metric function p. This is p: X x X   

is a function that returns the distance between any two elements of X. For example, if X = 
d,
 then p can be 

the Euclidean distance, as it is shown in Eq. (1). 

 

(1) 

 

Let S = (x1, y1), …, (xm, ym) be a sequence of training examples. For each x  X, let 1(x), …, m(x) be a 

reordering of {1, . . . , m} according to their distance to x, p(x, xi). That is, for all i < m, 

 

For a number k, the k-NN rule for binary classification is defined as follows: 

input: a training sample S = (x1, y1), …, (xm, ym) 

output: for every point x  X, return the majority label among {yi(x): i  k} 

3.2. Artificial Neural Networks 

An Artificial Neural Network is a set of single neurons interconnected to simulate the brain of the human 

architecture and function. 

ANN has the skill to generalize the data from previous examples to find and converge the new ones [12]. 

ANN models can be implemented in software to perform classification, diagnosis, and pattern 

recognition tasks. 

Multi-Layer Perceptron (MLP) is feedforward and supervised neural network. The architecture of the 

Multi-Layer perceptron is characterized by having its neurons grouped in layers of different levels. Each of 

the layers is made up of a set of neurons, and there are three different types of layers: the input layer, the 

hidden layers, and the output layer, as shown in Figure 1. 
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Fig. 1: The basic architecture of a Multi-Layer Perceptron. 

From Figure 1, it can be observed that the connections of the Multi-Layer perceptron are always directed 

forward, which means the neurons of one layer are connected with the neurons of the next layer; hence they 

are also called forward-fed networks. The connections between neurons are associated with a real number 

called the connection weight. All neurons in the network are also associated with a threshold. 

For the propagation of the input patterns for the Multi-Layer Perceptron, the following must be defined: 

C: No. of layers of the MLP. Therefore, there are C-2 hidden layers. 

nc: neurons in layer c, for c = 0, 1, 2, …, C-1. 

W
c
ij  is the weight matrix associated with the connections from layer c-1 to the layer c for c = 1, 2, …, C-

2, where w
c
ij  is the weight of the neuron connection i of layer c-1 to the neuron j of layer c. 

U
c
 = (u

c
i) s the vector of thresholds of the neurons of the layer c for c = 1, 2, …, C-1. 

a
c
i is the activation of the neuron i of layer c. 

The activations of neurons are activated in the following way. 

 

 Activation of input layer neurons (a
0
i). The neurons of the input layer are responsible for transmitting 

signals received from outside to the network. Therefore, Eq.(2) shows the activations of the input 
layer. 

a
0
i  = xi  para i = 1, 2, …, n1 (2) 

where X = (x1, x2, …, x3)  represents the pattern from the input of the network. 

 Activation of hidden and output layers neurons c (a
c
i).The hidden neurons of the network process 

information received by applying an activation function f to the sum of the products of the activations 

received by their corresponding weights as Eq.(3) shows: 

 

 

(3) 

 

      for i = 1, 2, …, nc and c = 1, 2, …, C-2. Where a
c-1

j are the activations of the neuron of layer c-1. 

 

The goal of neural network training is to minimize the cost function by finding the appropriate weights 

for the network connections, trying to ensure the best generalization. The discovery of these weights is 

performed by an algorithm called backpropagation. 

In the feedforward process, the activations are propagated forward. In the Backpropagation algorithm, 

the error made by the network is propagated backward while the network weights are updated. The optimizer 

is in charge of generating better and better weights. Its operation is based on calculating the gradient of the 

cost function (partial derivative) for each weight (parameter/dimension) of the network. Since the error must 

be minimized, each weight is modified in the (negative) direction of the gradient. The update of the 

parameters (weights and thresholds) is represented by Eq.(4). 
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(4) 

where e(n) is the error for pattern n and α is the learning ratio or rate, a parameter that influences the 

magnitude of the displacement on the surface of the error. 

3.3. Validation Algorithms 

 Hold-Out 

The dataset is partitioned into two subsets. One of them is used to train the classifier, and the other is for 

testing. The most common percentage of partitioning is 80% for training and 20% for testing. 

 K-Fold Cross-Validation 

It consists of sectioning the dataset into K parts. One part k is for the test set and the other part k-1 for the 

training set, the training set is what the model is trained with, and a part is left out for testing; this is repeated 

k times while changing the test part one by one until all tests have been performed the k parts. Figure 2 

illustrates an example with k = 5. 

Iteration      

1 Test     

2  Test    

3   Test   

4    Test  

5     Test 

Fig. 2: If k = 5, the dataset is partitioned into five sections, the algorithm iterates five times. A different block is selected 

as a testing dataset in each iteration, and the other four blocks are used for training. 

3.4. Dataset 

The name of the dataset is Autistic Spectrum Disorder Screening Data for Children 

(https://archive.ics.uci.edu/ml/datasets/Autistic+Spectrum+Disorder+Screening+Data+for+Children++). 

There are 292 records corresponding to 292 children between 4 and 11 years old. Each record has 21 

attributes: age, gender, ethnicity, country of residence, and others. The values of the attributes are the type of 

binary, categorical, string, and integer. All the features were converted to integer numbers. 

4. The Proposed Architecture 

The classifiers were developed with Python 3.7. language, using Anaconda Navigator and Jupyter 

Notebook, and Tensorflow library. It was implemented in a Laptop Omen core i7, 32GB-RAM. 

The dataset was unbalanced, then the function SMOTE from Python was applied to balance the data; 

therefore, we obtained better results. 

The parameters for the K-Nearest Neighbors classifier were a k = 16 and the Euclidian distance.  

In the case of the Neural Network, after performing several tests, we found the optimal number of hidden 

layers was five. Therefore, the number of neurons for each layer is shown in Table 1. 

Table 1:  The title should be in Capitalization of the first word 

Hidden layer Number of neurons 

1 500 

2 400 

3 300 

4 350 

5 750 

 

The activation of the neurons of the hidden layer is ReLU, and the activation of the output layer is 

Sigmoid. The optimization function was Adam. In this case, 300 epochs and a batch size of 100 were applied. 
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5. Results  

The Hold-Out (HO) and K-Fold Cross Validation algorithms were applied to validate the results of both 

classifiers. We used the 80-20 percentage for HO. Also, we obtained the following metrics: Confusion 

Matrix, Accuracy, Specificity, Sensitivity, and Precision. First, we present the results for the artificial neural 

network. 

In Table 2, we can observe that the neural network confused just one record. These results support the 

metrics shown in Table 3. 

Table 2: The Confusion Matrix Results for the Proposed Artificial Neural Network, with Hold-Out Validation 

Algorithm 

True Negatives False positives 

33 0 

False Negatives True positives 

1 27 

 

Table 3: The Metrics for the Proposed Artificial Neural Network 

Accuracy 98% 

Sensitivity 96% 

Specificity 100% 

Precision 100% 

 

Figure 3 shows the ROC curve. In Figure 3, it can be observed that the curve is almost perfect; the only 

false negative distorts it a bit. 

 

Fig. 3: The ROC curve for a Multi-Layer Perceptron with Hold-Out validation. 

Now, in Table 4, the neural network results from the confusion matrix are shown. These results are from 

the K-Fold Cross-Validation algorithm with K = 3. 

Table 4: The Confusion Matrix Results for the Proposed Artificial Neural Network with the K-Fold Cross-

Validation Algorithm 

Iterations 1 2 3 

True Positives 50 50 49 

True Negatives 51 50 50 

False Positives 0 0 0 

False Negatives 0 1 1 

 

From Table 4, it can be observed that the Multi-Layer Perceptron makes a mistake confusing a record as 

another class. This behavior can be seen graphically in Figure 4. Table 5 shows the metrics calculated for 

this method. 
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Fig. 4: The ROC curve for a Multi-Layer Perceptron with K-Fold Cross-Validation 

Figure 4 shows a correct classification (full blue line) which corresponds to the first iteration of the 

algorithm in Table 4, where there are not false negative nor false positive classifications. 

Table 5: The Metrics for the Proposed Artificial Neural Network 

Accuracy 99% 

Sensitivity 100% 

Specificity 98% 

Precision 100% 

 

Now, the results for the KNN classifier are presented, in both cases, for Hold-Out and K-Fold Cross-

Validation algorithms. The first result is shown in Table 6. 

Table 6: The Confusion Matrix Results for the Proposed KNN Classifier, with Hold-Out Validation Algorithm 

True Negatives False positives 

30 3 

False Negatives True positives 

0 28 

 

In this case, from Table 6, the classifier fails three times when it confuses three records as positive.  

Table 7 shows the other metrics. We can observe that the confusion matrix is related to these metrics. In 

Table 6, there are no false negatives; the sensitivity is 100% in Table 7. 

Table 7: The metrics for the proposed KNN with K = 16. 

Accuracy 95% 

Sensitivity 100% 

Specificity 91% 

Precision 91% 

 

Because of the behavior of the KNN method, the ROC curve (Figure 5) is a little slanted to the right. 

 

Fig. 5: The ROC curve for the KNN classifier with Hold-Out. 

Table 8 shows the confusion matrix. From Table 8, it can be observed that there are false positives and 

negatives in all the iterations. However, only in the first iteration, one false positive and no false negatives 
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appear. This result is reflected in Figure 6, where the full blue line shows the best behavior. The other lines 

are more slanted to the right. 

 

Table 8: The Confusion Matrix Results for the Proposed KNN Classifier with the K-Fold Cross-Validation 

Algorithm 

Iterations 1 2 3 4 5 6 7 

True Positives 22 20 19 20 20 21 19 

True Negatives 21 18 20 18 17 19 19 

False Positives 1 4 2 4 4 2 2 

False Negatives 0 1 2 1 2 1 3 

 

Fig. 6: The ROC curve for the KNN classifier with Hold-Out. 

Table 9 shows the quantitative metrics for the KNN classifier when we applied K-Fold Cross-Validation 

algorithm. From Table 8, we can observe that there are more false positives than false negatives, that is the 

reason that in Table 9, sensitivity is less that specificity. 

Table 9: The Metrics for the KNN Method 

Accuracy 90% 

Sensitivity 87% 

Specificity 93% 

Precision 87% 

 

Table 10 compares the accuracy results from the related work with the results of the proposed classifiers. 

From Table 10, it can be observed that our proposal obtained the 100% of classification. It has to be 

highlighted that the work of reference [6] used the same dataset that this work. Our proposal shows a 

classification of 100%. Vaishali and Sasikala did not mention the architecture of the Neural Network that 

they proposed in their work; however, our architecture shows a perfect classification. 

6. Conclusions 

The obtained results suggest that Machine Learning algorithms are suitable for diagnosing autism 

spectrum disorder. A Multi-Layer Perceptron (ML) and K-Nearest Neighbors algorithms were applied in this 

work, and the results of ML showed the best percentage of classification. The results of our proposal are 

competitive with those in State-of-Art. The percentage of classification obtained from the reference [6] and 

this work indicates that Multi-Layer Perceptron algorithms are the best option for diagnosing autism 

spectrum disorder. 

7. Acknowledgements  

The authors would like to thank the Instituto Politécnico Nacional (COFAA, EDI, and SIP), the 

CONACyT, and SNI for their support to develop this work. 

8. References  

[1] National Institute of Mental Health https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd 

259



  

[2] https://medlineplus.gov/autismspectrumdisorder.html 

[3] C. Lord, M. Elsabbagh, G. Baird, J. Veenstra-Vanderweele. Autism spectrum disorder, Lancet,  2018, 392: 508–

520,. 

[4] Z. Ramírez, N. López et al. Trayectoria de atención y demora diagnóstica en casos con trastorno del espectro 

autista. Technical report, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 2017. 

[5] Z. Ramírez, N. López et al. Infraestructura disponible para la atención de los trastornos del espectro autista en el 

sistema nacional de salud. Technical report, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 2018. 

[6] R. Vaishali, R. Sasikala. A machine learning based approach to classify autism with optimum behavior sets, 

International Journal of Engineering & Technology, 2018, 7 (4), 4216-4219. 

[7] L. Achenie, A. Scarpa, R. Factor, T. Wang, D. Robins, D. McCrickard. A Machine Learning Strategy for Autism 

Screening in Toddlers, J Dev Behav Pediatr, 2019, 40:369–376. 

[8] C. Wang, Z. Xiao, J. Wu. Functional connectivity-based classification of autism and control using SVM-RFECV 

on rs-fMRI data, Physica Medica, 2019, 65: 99–105. 

[9] S. Shahamiri, F. Thabtah. Autism AI: a New Autism Screening System Based on Artificial Intelligence, Cognitive 

Computation, 2020, 12:766–777. 

[10] B. Wingfield, S. Miller, P. Yogarajah, D. Kerr, B. Gardiner. A predictive model for paediatric autism screening, 

Health Informatics Journal, 2020, 26(4): 2538– 2553. 

[11] S. Shai and B. Shai. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 

2014, 258-259. 

[12] F. Chollet. Deep Learning with Python, New York: Manning Shelter Island, 2018. 

 

260


